All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Multilevel maximum likelihood estimation with application to covariance matrices

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F19%3A00486424" target="_blank" >RIV/67985807:_____/19:00486424 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216208:11320/19:10384004

  • Result on the web

    <a href="http://dx.doi.org/10.1080/03610926.2017.1422755" target="_blank" >http://dx.doi.org/10.1080/03610926.2017.1422755</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1080/03610926.2017.1422755" target="_blank" >10.1080/03610926.2017.1422755</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Multilevel maximum likelihood estimation with application to covariance matrices

  • Original language description

    The asymptotic variance of the maximum likelihood estimate is proved to decrease when the maximization is restricted to a subspace that contains the true parameter value. Maximum likelihood estimation allows a systematic fitting of covariance models to the sample, which is important in data assimilation. The hierarchical maximum likelihood approach is applied to the spectral diagonal covariance model with different parameterizations of eigenvalue decay, and to the sparse inverse covariance model with specified parameter values on different sets of nonzero entries. It is shown computationally that using smaller sets of parameters can decrease the sampling noise in high dimension substantially.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10103 - Statistics and probability

Result continuities

  • Project

    <a href="/en/project/GA13-34856S" target="_blank" >GA13-34856S: Advanced random field methods in data assimilation for short-term weather prediction</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Communications in Statistics - Theory and Methods

  • ISSN

    0361-0926

  • e-ISSN

  • Volume of the periodical

    48

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    17

  • Pages from-to

    909-925

  • UT code for WoS article

    000468073600010

  • EID of the result in the Scopus database

    2-s2.0-85041122146