All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A Memory-Based STDP Rule for Stable Attractor Dynamics in Boolean Recurrent Neural Networks

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F19%3A00503755" target="_blank" >RIV/67985807:_____/19:00503755 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1109/IJCNN.2019.8852043" target="_blank" >http://dx.doi.org/10.1109/IJCNN.2019.8852043</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/IJCNN.2019.8852043" target="_blank" >10.1109/IJCNN.2019.8852043</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A Memory-Based STDP Rule for Stable Attractor Dynamics in Boolean Recurrent Neural Networks

  • Original language description

    We consider a simplified Boolean model of the basal ganglia-thalamocortical network, and study the effect of a spiketiming- dependent plasticity (STDP) rule on the stabilization ofits attractor dynamics. More precisely, we introduce an adaptive STDP rule which constantly updates its learning rate based on the attractors that the network encounters during a window of past time steps. This so-called network memory is assumed to be dynamic: its duration is step-wise increased every time a trigger input pattern is detected, and is decreased otherwise. In this context, we show that well-adjusted trigger inputs can fine tune the network memory and its associated STDP rule in such a way to drive the network into stable and rich attractor dynamics. We discuss how this feature might be related to reward learning processes in the neurobiological context

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GA19-05704S" target="_blank" >GA19-05704S: FoNeCo: Analytical Foundations of Neurocomputing</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    IJCNN 2019. International Joint Conference on Neural Networks Proceedings

  • ISBN

    978-1-7281-1985-4

  • ISSN

  • e-ISSN

  • Number of pages

    8

  • Pages from-to

    N-20311

  • Publisher name

    IEEE

  • Place of publication

    New York

  • Event location

    Budapest

  • Event date

    Jul 14, 2019

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000530893802104