All
All

What are you looking for?

All
Projects
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Solvability Classes for Core Problems in Matrix Total Least Squares Minimization

Result description

Linear matrix approximation problems AX ≈ B are often solved by the total least squares minimization (TLS). Unfortunately, the TLS solution may not exist in general. The so-called core problem theory brought an insight into this effect. Moreover, it simplified the solvability analysis if B is of column rank one by extracting a core problem having always a unique TLS solution. However, if the rank of B is larger, the core problem may stay unsolvable in the TLS sense, as shown for the first time by Hnětynková, Plešinger, and Sima (2016). Full classification of core problems with respect to their solvability is still missing. Here we fill this gap. Then we concentrate on the so-called composed (or reducible) core problems that can be represented by a composition of several smaller core problems. We analyze how the solvability class of the components influences the solvability class of the composed problem. We also show on an example that the TLS solvability class of a core problem may be in some sense improved by its composition with a suitably chosen component. The existence of irreducible problems in various solvability classes is discussed.

Keywords

linear approximation problemcore problem theorytotal least squaresclassification(ir)reducible problem

The result's identifiers

Alternative languages

  • Result language

    angličtina

  • Original language name

    Solvability Classes for Core Problems in Matrix Total Least Squares Minimization

  • Original language description

    Linear matrix approximation problems AX ≈ B are often solved by the total least squares minimization (TLS). Unfortunately, the TLS solution may not exist in general. The so-called core problem theory brought an insight into this effect. Moreover, it simplified the solvability analysis if B is of column rank one by extracting a core problem having always a unique TLS solution. However, if the rank of B is larger, the core problem may stay unsolvable in the TLS sense, as shown for the first time by Hnětynková, Plešinger, and Sima (2016). Full classification of core problems with respect to their solvability is still missing. Here we fill this gap. Then we concentrate on the so-called composed (or reducible) core problems that can be represented by a composition of several smaller core problems. We analyze how the solvability class of the components influences the solvability class of the composed problem. We also show on an example that the TLS solvability class of a core problem may be in some sense improved by its composition with a suitably chosen component. The existence of irreducible problems in various solvability classes is discussed.

  • Czech name

  • Czech description

Classification

  • Type

    Jimp - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10102 - Applied mathematics

Result continuities

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Applications of Mathematics

  • ISSN

    0862-7940

  • e-ISSN

  • Volume of the periodical

    64

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    CZ - CZECH REPUBLIC

  • Number of pages

    26

  • Pages from-to

    103-128

  • UT code for WoS article

    000463984700002

  • EID of the result in the Scopus database

    2-s2.0-85064195522

Basic information

Result type

Jimp - Article in a specialist periodical, which is included in the Web of Science database

Jimp

OECD FORD

Applied mathematics

Year of implementation

2019