A Local Approach to the Erdős-Sós Conjecture
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F19%3A00504792" target="_blank" >RIV/67985807:_____/19:00504792 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1137/18M118195X" target="_blank" >http://dx.doi.org/10.1137/18M118195X</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1137/18M118195X" target="_blank" >10.1137/18M118195X</a>
Alternative languages
Result language
angličtina
Original language name
A Local Approach to the Erdős-Sós Conjecture
Original language description
A famous conjecture of Erdős-Sós states that every graph with average degree more than k-1 contains all trees with k edges as subgraphs. We prove that the Erdős-Sós conjecture holds approximately, if the size of the embedded tree is linear in the size of the graph, and the maximum degree of the tree is sublinear.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GJ16-07822Y" target="_blank" >GJ16-07822Y: Extremal graph theory and applications</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
SIAM Journal on Discrete Mathematics
ISSN
0895-4801
e-ISSN
—
Volume of the periodical
33
Issue of the periodical within the volume
2
Country of publishing house
US - UNITED STATES
Number of pages
22
Pages from-to
643-664
UT code for WoS article
000473031300004
EID of the result in the Scopus database
2-s2.0-85069647119