All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Probabilistic Bounds for Approximation by Neural Networks

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F19%3A00507969" target="_blank" >RIV/67985807:_____/19:00507969 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-030-30487-4_33" target="_blank" >http://dx.doi.org/10.1007/978-3-030-30487-4_33</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-30487-4_33" target="_blank" >10.1007/978-3-030-30487-4_33</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Probabilistic Bounds for Approximation by Neural Networks

  • Original language description

    A probabilistic model describing relevance of tasks to be computed by a class of feedforward networks is studied. Bounds on correlations of network input-output functions with almost all randomly-chosen functions are derived. Impact of sizes of function domains on correlations are analyzed from the point of view of the concentration of measure phenomenon. It is shown that on large domains, errors of approximation of randomly chosen functions by fixed input-output functions are almost deterministic.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GA19-05704S" target="_blank" >GA19-05704S: FoNeCo: Analytical Foundations of Neurocomputing</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Artificial Neural Networks and Machine Learning – ICANN 2019: Theoretical Neural Computation. Proceedings, Part I

  • ISBN

    978-3-030-30486-7

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    11

  • Pages from-to

    418-428

  • Publisher name

    Springer

  • Place of publication

    Cham

  • Event location

    Munich

  • Event date

    Sep 17, 2019

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article