Probabilistic Bounds for Binary Classification of Large Data Sets
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F20%3A00503127" target="_blank" >RIV/67985807:_____/20:00503127 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-030-16841-4_32" target="_blank" >http://dx.doi.org/10.1007/978-3-030-16841-4_32</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-16841-4_32" target="_blank" >10.1007/978-3-030-16841-4_32</a>
Alternative languages
Result language
angličtina
Original language name
Probabilistic Bounds for Binary Classification of Large Data Sets
Original language description
A probabilistic model for classification of task relevance is investigated. Correlations between randomly-chosen functions and network input-output functions are estimated. Impact of large data sets is analyzed from the point of view of the concentration of measure phenomenon. The Azuma-Hoeffding Inequality is exploited, which can be applied also when the naive Bayes assumption is not satisfied (i.e., when assignments of class labels to feature vectors are not independent).
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA18-23827S" target="_blank" >GA18-23827S: Capabilities and limitations of shallow and deep networks</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Recent Advances in Big Data and Deep Learning
ISBN
978-3-030-16840-7
ISSN
2661-8141
e-ISSN
—
Number of pages
11
Pages from-to
309-319
Publisher name
Springer
Place of publication
Cham
Event location
Sestri Levante
Event date
Apr 16, 2019
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—