All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Probabilistic Bounds for Binary Classification of Large Data Sets

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F20%3A00503127" target="_blank" >RIV/67985807:_____/20:00503127 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-030-16841-4_32" target="_blank" >http://dx.doi.org/10.1007/978-3-030-16841-4_32</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-16841-4_32" target="_blank" >10.1007/978-3-030-16841-4_32</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Probabilistic Bounds for Binary Classification of Large Data Sets

  • Original language description

    A probabilistic model for classification of task relevance is investigated. Correlations between randomly-chosen functions and network input-output functions are estimated. Impact of large data sets is analyzed from the point of view of the concentration of measure phenomenon. The Azuma-Hoeffding Inequality is exploited, which can be applied also when the naive Bayes assumption is not satisfied (i.e., when assignments of class labels to feature vectors are not independent).

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GA18-23827S" target="_blank" >GA18-23827S: Capabilities and limitations of shallow and deep networks</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Recent Advances in Big Data and Deep Learning

  • ISBN

    978-3-030-16840-7

  • ISSN

    2661-8141

  • e-ISSN

  • Number of pages

    11

  • Pages from-to

    309-319

  • Publisher name

    Springer

  • Place of publication

    Cham

  • Event location

    Sestri Levante

  • Event date

    Apr 16, 2019

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article