On the Complexity of Validity Degrees in Łukasiewicz Logic
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F20%3A00531136" target="_blank" >RIV/67985807:_____/20:00531136 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-030-51466-2_15" target="_blank" >http://dx.doi.org/10.1007/978-3-030-51466-2_15</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-51466-2_15" target="_blank" >10.1007/978-3-030-51466-2_15</a>
Alternative languages
Result language
angličtina
Original language name
On the Complexity of Validity Degrees in Łukasiewicz Logic
Original language description
Lukasiewicz logic is an established formal system of manyvalued logic. Decision problems in both propositional and first-order case have been classified as to their computational complexity or degrees of undecidability. For the propositional fragment, theoremhood and provability from finite theories are coNP complete. This paper extends the range of results by looking at validity degree in propositional Lukasiewicz logic, a natural optimization problem to find the minimal value of a term under a finite theory in a fixed complete semantics interpreting the logic. A classification for this problem is provided using the oracle class FPNP, where it is shown complete under metric reductions.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA18-00113S" target="_blank" >GA18-00113S: Reasoning with graded properties</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Beyond the Horizon of Computability
ISBN
978-3-030-51465-5
ISSN
0302-9743
e-ISSN
—
Number of pages
14
Pages from-to
175-188
Publisher name
Springer
Place of publication
Cham
Event location
Salerno
Event date
Jun 29, 2020
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—