All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Testing Heterogeneity in Inter-Rater Reliability

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F20%3A00531172" target="_blank" >RIV/67985807:_____/20:00531172 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216208:11210/20:10416702 RIV/00216208:11410/20:10416702

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-030-43469-4_26" target="_blank" >http://dx.doi.org/10.1007/978-3-030-43469-4_26</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-43469-4_26" target="_blank" >10.1007/978-3-030-43469-4_26</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Testing Heterogeneity in Inter-Rater Reliability

  • Original language description

    Estimating the inter-rater reliability (IRR) is important for assessing and improving the quality of ratings. In some cases, the IRR may differ between groups due to their features. To test heterogeneity in IRR, the second-order generalized estimating equations (GEE2) and linear mixed-effects models (LME) were already used. Another method capable of estimating the components for IRR is generalized additive models (GAM). This paper presents a simulation study evaluating the performance of these methods in estimating variance components and in testing heterogeneity in IRR. We consider a wide range of sample sizes and various scenarios leading to heterogenous IRR. The results show, that while the LME and GAM models perform similarly and yield reliable estimates, the GEE2 models may lead to incorrect results.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10103 - Statistics and probability

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Quantitative Psychology

  • ISBN

    978-3-030-43468-7

  • ISSN

    2194-1009

  • e-ISSN

  • Number of pages

    18

  • Pages from-to

    347-364

  • Publisher name

    Springer

  • Place of publication

    Cham

  • Event location

    Santiago

  • Event date

    Jul 15, 2019

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article