Bounds on Complexity when Sorting Reals
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F20%3A00531334" target="_blank" >RIV/67985807:_____/20:00531334 - isvavai.cz</a>
Result on the web
<a href="http://hdl.handle.net/11104/0310011" target="_blank" >http://hdl.handle.net/11104/0310011</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.46300/9106.2020.14.39" target="_blank" >10.46300/9106.2020.14.39</a>
Alternative languages
Result language
angličtina
Original language name
Bounds on Complexity when Sorting Reals
Original language description
We derive the upper bounds on the complexity of the counting sort algorithm applied to reals. We show that the algorithm has a time complexity O(n) for n data items distributed uniformly or exponentially. The proof is based on the fact that the use of comparison-type sorting for small portion of a given data set is bounded by a linear function of n. Some numerical demonstrations are discussed.
Czech name
—
Czech description
—
Classification
Type
J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database
CEP classification
—
OECD FORD branch
10103 - Statistics and probability
Result continuities
Project
<a href="/en/project/LM2015068" target="_blank" >LM2015068: Research Infrastructure for Fermilab Experiments</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
International Journal of Circuits, Systems and Signal Processing
ISSN
1998-4464
e-ISSN
—
Volume of the periodical
14
Issue of the periodical within the volume
July
Country of publishing house
US - UNITED STATES
Number of pages
6
Pages from-to
276-281
UT code for WoS article
—
EID of the result in the Scopus database
2-s2.0-85087528484