All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Black-box Evolutionary Search for Adversarial Examples against Deep Image Classifiers in Non-Targeted Attacks

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F20%3A00534345" target="_blank" >RIV/67985807:_____/20:00534345 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1109/IJCNN48605.2020.9207688" target="_blank" >http://dx.doi.org/10.1109/IJCNN48605.2020.9207688</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/IJCNN48605.2020.9207688" target="_blank" >10.1109/IJCNN48605.2020.9207688</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Black-box Evolutionary Search for Adversarial Examples against Deep Image Classifiers in Non-Targeted Attacks

  • Original language description

    Machine learning models exhibit vulnerability to adversarial examples i.e., artificially created inputs that become misinterpreted. The goal of this paper is to explore non-targeted black-box adversarial attacks on deep networks performing image classification. The original evolutionary algorithm for generating adversarial examples is proposed that employs a guided multi-objective search through the space of perturbed images. The efficiency of attacks is validated by experiments with the CIFAR-10 data set. The experimental results verify the usability of our approach against deep convolutional neural networks.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GA18-23827S" target="_blank" >GA18-23827S: Capabilities and limitations of shallow and deep networks</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    2020 International Joint Conference on Neural Networks (IJCNN): Conference Proceedings

  • ISBN

    978-1-7281-6926-2

  • ISSN

  • e-ISSN

  • Number of pages

    8

  • Pages from-to

    9207688

  • Publisher name

    IEEE

  • Place of publication

    Piscataway

  • Event location

    Glasgow

  • Event date

    Jul 19, 2020

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article