All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Vulnerability of classifiers to evolutionary generated adversarial examples

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F20%3A00485639" target="_blank" >RIV/67985807:_____/20:00485639 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1016/j.neunet.2020.04.015" target="_blank" >http://dx.doi.org/10.1016/j.neunet.2020.04.015</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.neunet.2020.04.015" target="_blank" >10.1016/j.neunet.2020.04.015</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Vulnerability of classifiers to evolutionary generated adversarial examples

  • Original language description

    This paper deals with the vulnerability of machine learning models to adversarial examples and its implication for robustness and generalization properties. We propose an evolutionary algorithm that can generate adversarial examples for any machine learning model in the black-box attack scenario. This way, we can find adversarial examples without access to model’s parameters, only by querying the model at hand. We have tested a range of machine learning models including deep and shallow neural networks. Our experiments have shown that the vulnerability to adversarial examples is not only the problem of deep networks, but it spreads through various machine learning architectures. Rather, it depends on the type of computational units. Local units, such as Gaussian kernels, are less vulnerable to adversarial examples.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GA18-23827S" target="_blank" >GA18-23827S: Capabilities and limitations of shallow and deep networks</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Neural Networks

  • ISSN

    0893-6080

  • e-ISSN

  • Volume of the periodical

    127

  • Issue of the periodical within the volume

    July

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    14

  • Pages from-to

    168-181

  • UT code for WoS article

    000536453100016

  • EID of the result in the Scopus database

    2-s2.0-85083895880