All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Vulnerability of Machine Learning Models to Adversarial Examples

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F16%3A00462893" target="_blank" >RIV/67985807:_____/16:00462893 - isvavai.cz</a>

  • Result on the web

    <a href="http://ceur-ws.org/Vol-1649/187.pdf" target="_blank" >http://ceur-ws.org/Vol-1649/187.pdf</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Vulnerability of Machine Learning Models to Adversarial Examples

  • Original language description

    We propose a genetic algorithm for generating adversarial examples for machine learning models. Such approach is able to find adversarial examples without the access to model’s parameters. Different models are tested, including both deep and shallow neural networks architectures. We show that RBF networks and SVMs with Gaussian kernels tend to be rather robust and not prone to misclassification of adversarial examples.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA15-18108S" target="_blank" >GA15-18108S: Model complexity of neural, radial, and kernel networks</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings ITAT 2016: Information Technologies - Applications and Theory

  • ISBN

    978-1-5370-1674-0

  • ISSN

    1613-0073

  • e-ISSN

  • Number of pages

    8

  • Pages from-to

    187-194

  • Publisher name

    Technical University & CreateSpace Independent Publishing Platform

  • Place of publication

    Aachen & Charleston

  • Event location

    Tatranské Matliare

  • Event date

    Sep 15, 2016

  • Type of event by nationality

    EUR - Evropská akce

  • UT code for WoS article