All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Evolutionary Generation of Adversarial Examples for Deep and Shallow Machine Learning Models

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F16%3A00469507" target="_blank" >RIV/67985807:_____/16:00469507 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1145/2955129.2955178" target="_blank" >http://dx.doi.org/10.1145/2955129.2955178</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1145/2955129.2955178" target="_blank" >10.1145/2955129.2955178</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Evolutionary Generation of Adversarial Examples for Deep and Shallow Machine Learning Models

  • Original language description

    Studying vulnerability of machine learning models to adversarial examples is an important way to understand their robustness and generalization properties. In this paper, we propose a genetic algorithm for generating adversarial examples for machine learning models. Such approach is able to find adversarial examples without the access to model's parameters. Different models are tested, including both deep and shallow neural networks architectures. We show that RBF networks and SVMs with RBF kernels tend to be rather robust and not prone to misclassification of adversarial examples.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA15-19877S" target="_blank" >GA15-19877S: Automated Knowledge and Plan Modeling for Autonomous Robots</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the The 3rd Multidisciplinary International Social Networks Conference on SocialInformatics 2016, Data Science 2016

  • ISBN

    978-1-4503-4129-5

  • ISSN

  • e-ISSN

  • Number of pages

    7

  • Pages from-to

  • Publisher name

    ACM

  • Place of publication

    New York

  • Event location

    New Yersey

  • Event date

    Aug 15, 2016

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article