Deep Networks with RBF Layers to Prevent Adversarial Examples
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F18%3A00490841" target="_blank" >RIV/67985807:_____/18:00490841 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-319-91253-0_25" target="_blank" >http://dx.doi.org/10.1007/978-3-319-91253-0_25</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-91253-0_25" target="_blank" >10.1007/978-3-319-91253-0_25</a>
Alternative languages
Result language
angličtina
Original language name
Deep Networks with RBF Layers to Prevent Adversarial Examples
Original language description
We propose a simple way to increase the robustness of deep neural network models to adversarial examples. The new architecture obtained by stacking deep neural network and RBF network is proposed. It is shown on experiments that such architecture is much more robust to adversarial examples than the original one while its accuracy on legitimate data stays more or less the same.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA18-23827S" target="_blank" >GA18-23827S: Capabilities and limitations of shallow and deep networks</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Artificial Intelligence and Soft Computing
ISBN
978-3-319-91252-3
ISSN
0302-9743
e-ISSN
1611-3349
Number of pages
10
Pages from-to
257-266
Publisher name
Springer
Place of publication
Cham
Event location
Zakopane
Event date
Jun 3, 2018
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000552718500025