All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Translation-Invariant Kernels for Multivariable Approximation

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F21%3A00532708" target="_blank" >RIV/67985807:_____/21:00532708 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1109/TNNLS.2020.3026720" target="_blank" >http://dx.doi.org/10.1109/TNNLS.2020.3026720</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/TNNLS.2020.3026720" target="_blank" >10.1109/TNNLS.2020.3026720</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Translation-Invariant Kernels for Multivariable Approximation

  • Original language description

    Suitability of shallow (one-hidden-layer) networks with translation-invariant kernel units for function approximation and classification tasks is investigated. It is shown that a critical property influencing the capabilities of kernel networks is how the Fourier transforms of kernels converge to zero. The Fourier transforms of kernels suitable for multivariable approximation can have negative values but must be almost everywhere nonzero. In contrast, the Fourier transforms of kernels suitable for maximal margin classification must be everywhere nonnegative but can have large sets where they are equal to zero (e.g., they can be compactly supported). The behavior of the Fourier transforms of multivariable kernels is analyzed using the Hankel transform. The general results are illustrated by examples of both univariable and multivariable kernels (such as Gaussian, Laplace, rectangle, sinc, and cut power kernels)

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GA18-23827S" target="_blank" >GA18-23827S: Capabilities and limitations of shallow and deep networks</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    IEEE Transactions on Neural Networks and Learning Systems

  • ISSN

    2162-237X

  • e-ISSN

    2162-2388

  • Volume of the periodical

    32

  • Issue of the periodical within the volume

    11

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    10

  • Pages from-to

    5072-5081

  • UT code for WoS article

    000711638200028

  • EID of the result in the Scopus database

    2-s2.0-85092915493