Kernel Networks for Function Approximation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F16%3A00461978" target="_blank" >RIV/67985807:_____/16:00461978 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-319-44188-7_22" target="_blank" >http://dx.doi.org/10.1007/978-3-319-44188-7_22</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-44188-7_22" target="_blank" >10.1007/978-3-319-44188-7_22</a>
Alternative languages
Result language
angličtina
Original language name
Kernel Networks for Function Approximation
Original language description
Capabilities of radial convolution kernel networks to approximate multivariate functions are investigated. A necessary condition for universal approximation property of convolution kernel networks is given. Kernels that satisfy the condition in arbitrary dimension are investigated in terms of their Hankel and Fourier transforms. A computational example is presented to assess approximation capabilities of different convolution kernel networks.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/LD13002" target="_blank" >LD13002: Modeling of complex systems for softcomputing methods</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Engineering Applications of Neural Networks
ISBN
978-3-319-44187-0
ISSN
1865-0929
e-ISSN
—
Number of pages
12
Pages from-to
295-306
Publisher name
Springer
Place of publication
Cham
Event location
Aberdeen
Event date
Sep 2, 2016
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—