All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Largest and Smallest Area Triangles on Imprecise Points

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F21%3A00536127" target="_blank" >RIV/67985807:_____/21:00536127 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1016/j.comgeo.2020.101742" target="_blank" >http://dx.doi.org/10.1016/j.comgeo.2020.101742</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.comgeo.2020.101742" target="_blank" >10.1016/j.comgeo.2020.101742</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Largest and Smallest Area Triangles on Imprecise Points

  • Original language description

    Assume we are given a set of parallel line segments in the plane, and we wish to place a point on each line segment such that the resulting point set maximizes or minimizes the area of the largest or smallest triangle in the set. We analyze the complexity of the four resulting computational problems, and we show that three of them admit polynomial-time algorithms, while the fourth is NP-hard. Specifically, we show that maximizing the largest triangle can be done in O (n2) time (or in (O(n log n) time for unit segments). Minimizing the largest triangle can be done in (O(n2 log n) time, maximizing the smallest triangle is NP-hard, but minimizing the smallest triangle can be done in O (n2) time. We also discuss to what extent our results can be generalized to polygons with k>3 sides.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GJ19-06792Y" target="_blank" >GJ19-06792Y: Structural properties of visibility in terrains and farthest color Voronoi diagrams</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Computational Geometry-Theory and Applications

  • ISSN

    0925-7721

  • e-ISSN

    1879-081X

  • Volume of the periodical

    95

  • Issue of the periodical within the volume

    April 2021

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    21

  • Pages from-to

    101742

  • UT code for WoS article

    000674250600007

  • EID of the result in the Scopus database

    2-s2.0-85098725460