All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On the Intersections of Non-homotopic Loops

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F21%3A00539705" target="_blank" >RIV/67985807:_____/21:00539705 - isvavai.cz</a>

  • Alternative codes found

    RIV/68407700:21240/21:00347406

  • Result on the web

    <a href="https://link.springer.com/chapter/10.1007%2F978-3-030-67899-9_15" target="_blank" >https://link.springer.com/chapter/10.1007%2F978-3-030-67899-9_15</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-67899-9_15" target="_blank" >10.1007/978-3-030-67899-9_15</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On the Intersections of Non-homotopic Loops

  • Original language description

    Let V={v1,…,vn} be a set of n points in the plane and let x∈V . An x-loop is a continuous closed curve not containing any point of V, except of passing exactly once through the point x. We say that two x-loops are non-homotopic if they cannot be transformed continuously into each other without passing through a point of V. For n=2 , we give an upper bound 2O(k) on the maximum size of a family of pairwise non-homotopic x-loops such that every loop has fewer than k self-intersections and any two loops have fewer than k intersections. This result is inspired by a very recent result of Pach, Tardos, and Tóth who proved the upper bounds 216k4 for the slightly different scenario when x∉V .

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Algorithms and Discrete Applied Mathematics

  • ISBN

    978-3-030-67898-2

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    10

  • Pages from-to

    196-205

  • Publisher name

    Springer

  • Place of publication

    Cham

  • Event location

    Rupnagar

  • Event date

    Feb 11, 2021

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article