Non-homotopic Loops with a Bounded Number of Pairwise Intersections
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F21%3A00551784" target="_blank" >RIV/67985807:_____/21:00551784 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-030-92931-2_15" target="_blank" >http://dx.doi.org/10.1007/978-3-030-92931-2_15</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-92931-2_15" target="_blank" >10.1007/978-3-030-92931-2_15</a>
Alternative languages
Result language
angličtina
Original language name
Non-homotopic Loops with a Bounded Number of Pairwise Intersections
Original language description
Let V_n be a set of n points in the plane and let x∈V_n . An x-loop is a continuous closed curve not containing any point of V_n . We say that two x-loops are non-homotopic if they cannot be transformed continuously into each other without passing through a point of Vn . For n=2, we give an upper bound e^O(k^(1/2)) on the maximum size of a family of pairwise non-homotopic x-loops such that every loop has fewer than k self-intersections and any two loops have fewer than k intersections. The exponent O(k^(1/2)) is asymptotically tight. The previous upper bound 2^((2k)^4) was proved by Pach et al. [6]. We prove the above result by proving the asymptotic upper bound e^O(k^(1/2)) for a similar problem when x∈V_n, and by proving a close relation between the two problems.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GJ20-27757Y" target="_blank" >GJ20-27757Y: Random discrete structures</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Graph Drawing and Network Visualization. 29th International Symposium GD 2021, Revised Selected Papers
ISBN
978-3-030-92930-5
ISSN
0302-9743
e-ISSN
—
Number of pages
13
Pages from-to
210-222
Publisher name
Springer
Place of publication
Cham
Event location
Tübingen
Event date
Sep 14, 2021
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—