All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Non-homotopic Loops with a Bounded Number of Pairwise Intersections

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F21%3A00551784" target="_blank" >RIV/67985807:_____/21:00551784 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-030-92931-2_15" target="_blank" >http://dx.doi.org/10.1007/978-3-030-92931-2_15</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-92931-2_15" target="_blank" >10.1007/978-3-030-92931-2_15</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Non-homotopic Loops with a Bounded Number of Pairwise Intersections

  • Original language description

    Let V_n be a set of n points in the plane and let x∈V_n . An x-loop is a continuous closed curve not containing any point of V_n . We say that two x-loops are non-homotopic if they cannot be transformed continuously into each other without passing through a point of Vn . For n=2, we give an upper bound e^O(k^(1/2)) on the maximum size of a family of pairwise non-homotopic x-loops such that every loop has fewer than k self-intersections and any two loops have fewer than k intersections. The exponent O(k^(1/2)) is asymptotically tight. The previous upper bound 2^((2k)^4) was proved by Pach et al. [6]. We prove the above result by proving the asymptotic upper bound e^O(k^(1/2)) for a similar problem when x∈V_n, and by proving a close relation between the two problems.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GJ20-27757Y" target="_blank" >GJ20-27757Y: Random discrete structures</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Graph Drawing and Network Visualization. 29th International Symposium GD 2021, Revised Selected Papers

  • ISBN

    978-3-030-92930-5

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    13

  • Pages from-to

    210-222

  • Publisher name

    Springer

  • Place of publication

    Cham

  • Event location

    Tübingen

  • Event date

    Sep 14, 2021

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article