Poisson Graphical Granger Causality by Minimum Message Length
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F21%3A00539725" target="_blank" >RIV/67985807:_____/21:00539725 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-030-67658-2_30" target="_blank" >http://dx.doi.org/10.1007/978-3-030-67658-2_30</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-67658-2_30" target="_blank" >10.1007/978-3-030-67658-2_30</a>
Alternative languages
Result language
angličtina
Original language name
Poisson Graphical Granger Causality by Minimum Message Length
Original language description
Graphical Granger models are popular models for causal inference among time series. In this paper we focus on the Poisson graphical Granger model where the time series follow Poisson distribution. We use minimum message length principle for determination of causal connections in the model. Based on the dispersion coefficient of each time series and on the initial maximum likelihood estimates of the regression coefficients, we propose a minimum message length criterion to select the subset of causally connected time series with each target time series. We propose a genetic-type algorithm to find this set. To our best knowledge, this is the first work on applying the minimum message length principle to the Poisson graphical Granger model. Common graphical Granger models are usually applied in scenarios when the number of time observations is much greater than the number of time series, normally by several orders of magnitude. In the opposite case of “short” time series, these methods often suffer from overestimation. We demonstrate in the experiments with synthetic Poisson and point process time series that our method is for short time series superior in precision to the compared causal inference methods, i.e. the heterogeneous Granger causality method, the Bayesian causal inference method using structural equation models LINGAM and the point process Granger causality.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/GA19-16066S" target="_blank" >GA19-16066S: Nonlinear interactions and information transfer in complex systems with extreme events</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Machine Learning and Knowledge Discovery in Databases. Proceedings, Part 1
ISBN
978-3-030-67657-5
ISSN
0302-9743
e-ISSN
—
Number of pages
16
Pages from-to
526-541
Publisher name
Springer
Place of publication
Cham
Event location
Ghent / Virtual
Event date
Sep 14, 2020
Type of event by nationality
EUR - Evropská akce
UT code for WoS article
000717522300030