All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Poisson Graphical Granger Causality by Minimum Message Length

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F21%3A00539725" target="_blank" >RIV/67985807:_____/21:00539725 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-030-67658-2_30" target="_blank" >http://dx.doi.org/10.1007/978-3-030-67658-2_30</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-67658-2_30" target="_blank" >10.1007/978-3-030-67658-2_30</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Poisson Graphical Granger Causality by Minimum Message Length

  • Original language description

    Graphical Granger models are popular models for causal inference among time series. In this paper we focus on the Poisson graphical Granger model where the time series follow Poisson distribution. We use minimum message length principle for determination of causal connections in the model. Based on the dispersion coefficient of each time series and on the initial maximum likelihood estimates of the regression coefficients, we propose a minimum message length criterion to select the subset of causally connected time series with each target time series. We propose a genetic-type algorithm to find this set. To our best knowledge, this is the first work on applying the minimum message length principle to the Poisson graphical Granger model. Common graphical Granger models are usually applied in scenarios when the number of time observations is much greater than the number of time series, normally by several orders of magnitude. In the opposite case of “short” time series, these methods often suffer from overestimation. We demonstrate in the experiments with synthetic Poisson and point process time series that our method is for short time series superior in precision to the compared causal inference methods, i.e. the heterogeneous Granger causality method, the Bayesian causal inference method using structural equation models LINGAM and the point process Granger causality.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10102 - Applied mathematics

Result continuities

  • Project

    <a href="/en/project/GA19-16066S" target="_blank" >GA19-16066S: Nonlinear interactions and information transfer in complex systems with extreme events</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Machine Learning and Knowledge Discovery in Databases. Proceedings, Part 1

  • ISBN

    978-3-030-67657-5

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    16

  • Pages from-to

    526-541

  • Publisher name

    Springer

  • Place of publication

    Cham

  • Event location

    Ghent / Virtual

  • Event date

    Sep 14, 2020

  • Type of event by nationality

    EUR - Evropská akce

  • UT code for WoS article

    000717522300030