Causal Discovery in Hawkes Processes by Minimum Description Length
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F22%3A00569861" target="_blank" >RIV/67985807:_____/22:00569861 - isvavai.cz</a>
Result on the web
<a href="https://ojs.aaai.org/index.php/AAAI/article/view/20656/20415" target="_blank" >https://ojs.aaai.org/index.php/AAAI/article/view/20656/20415</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Causal Discovery in Hawkes Processes by Minimum Description Length
Original language description
Hawkes processes are a special class of temporal point processes which exhibit a natural notion of causality, as occurrence of events in the past may increase the probability of events in the future. Discovery of the underlying infuence network among the dimensions of multi-dimensional temporal processes is of high importance in disciplines where a high-frequency data is to model, e.g. in fnancial data or in seismological data. This paper approaches the problem of learning Granger-causal network in multi-dimensional Hawkes processes. We formulate this problem as a model selection task in which we follow the minimum description length (MDL) principle. Moreover, we propose a general algorithm for MDL-based inference using a Monte-Carlo method and we use it for our causal discovery problem. We compare our algorithm with the state-of-the-art baseline methods on synthetic and real-world fnancial data. The synthetic experiments demonstrate superiority of our method in causal graph discovery compared to the baseline methods with respect to the size of the data. The results of experiments with the G-7 bonds price data are consistent with the experts’ knowledge.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA19-16066S" target="_blank" >GA19-16066S: Nonlinear interactions and information transfer in complex systems with extreme events</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the 36th AAAI Conference on Artificial Intelligence
ISBN
978-1-57735-876-3
ISSN
2159-5399
e-ISSN
2374-3468
Number of pages
10
Pages from-to
6978-6987
Publisher name
AAAI Press
Place of publication
Palo Alto
Event location
Online
Event date
Feb 22, 2022
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000893636207010