All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Multiobjective Evolution for Convolutional Neural Network Architecture Search

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F20%3A00534830" target="_blank" >RIV/67985807:_____/20:00534830 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-030-61401-0_25" target="_blank" >http://dx.doi.org/10.1007/978-3-030-61401-0_25</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-61401-0_25" target="_blank" >10.1007/978-3-030-61401-0_25</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Multiobjective Evolution for Convolutional Neural Network Architecture Search

  • Original language description

    The choice of an architecture is crucial for the performance of the neural network, and thus automatic methods for architecture search have been proposed to provide a data-dependent solution to this problem. In this paper, we deal with an automatic neural architecture search for convolutional neural networks. We propose a novel approach for architecture selection based on multi-objective evolutionary optimisation. Our algorithm optimises not only the performance of the network, but it controls also the size of the network, in terms of the number of network parameters. The proposed algorithm is evaluated on experiments, including MNIST and fashionMNIST classification problems. Our approach outperforms both the considered baseline architectures and the standard genetic algorithm.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GA18-23827S" target="_blank" >GA18-23827S: Capabilities and limitations of shallow and deep networks</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Artificial Intelligence and Soft Computing. ICAISC 2020 Proceedings, Part I

  • ISBN

    978-3-030-61400-3

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    10

  • Pages from-to

    261-270

  • Publisher name

    Springer

  • Place of publication

    Cham

  • Event location

    Zakopane

  • Event date

    Oct 12, 2020

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article