All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Multi-objective Evolution for Deep Neural Network Architecture Search

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F20%3A00534837" target="_blank" >RIV/67985807:_____/20:00534837 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-030-63836-8_23" target="_blank" >http://dx.doi.org/10.1007/978-3-030-63836-8_23</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-63836-8_23" target="_blank" >10.1007/978-3-030-63836-8_23</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Multi-objective Evolution for Deep Neural Network Architecture Search

  • Original language description

    In this paper, we propose a multi-objective evolutionary algorithm for automatic deep neural architecture search. The algorithm optimizes the performance of the model together with the number of network parameters. This allows exploring architectures that are both successful and compact. We test the proposed solution on several image classification data sets including MNIST, fashionMNIST and CIFAR-10, and we consider deep architectures including convolutional and fully connected networks. The effects of using two different versions of multi-objective selections are also examined in the paper. Our approach outperforms both the considered baseline architectures and the standard genetic algorithm used in our previous work.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GA18-23827S" target="_blank" >GA18-23827S: Capabilities and limitations of shallow and deep networks</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Neural Information Processing. ICONIP 2020 Proceedings, Part III

  • ISBN

    978-3-030-63835-1

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    12

  • Pages from-to

    270-281

  • Publisher name

    Springer

  • Place of publication

    Cham

  • Event location

    Bangkok

  • Event date

    Nov 23, 2020

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article