Efficient Text Classification with Echo State Networks
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F21%3A00542211" target="_blank" >RIV/67985807:_____/21:00542211 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1109/IJCNN52387.2021.9533958" target="_blank" >http://dx.doi.org/10.1109/IJCNN52387.2021.9533958</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/IJCNN52387.2021.9533958" target="_blank" >10.1109/IJCNN52387.2021.9533958</a>
Alternative languages
Result language
angličtina
Original language name
Efficient Text Classification with Echo State Networks
Original language description
We consider echo state networks (ESNs) for text classification. More specifically, we investigate the learning capabilities of ESNs with pre-trained word embedding as input features, trained on the IMDb and TREC sentiment and question classification datasets, respectively. First, we introduce a customized training paradigm for the processing of multiple input time series (the inputs texts) associated with categorical targets (their corresponding classes). For sentiment tasks, we use an additional frozen attention mechanism which is based on an external lexicon, and hence requires only negligible computational cost. Within this paradigm, ESNs can be trained in tens of seconds on a GPU. We show that ESNs significantly outperform their Ridge regression baselines provided with the same embedded features. ESNs also compete with classical Bi-LSTM networks while keeping a training time of up to 23 times faster. These results show that ESNs can be considered as robust, efficient and fast candidates for text classification tasks. Overall, this study falls within the context of light and fast-to-train models for NLP.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA19-05704S" target="_blank" >GA19-05704S: FoNeCo: Analytical Foundations of Neurocomputing</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
IJCNN 2021. The International Joint Conference on Neural Networks Proceedings
ISBN
978-0-7381-3366-9
ISSN
—
e-ISSN
—
Number of pages
8
Pages from-to
1-8
Publisher name
IEEE
Place of publication
Piscataway
Event location
Virtual
Event date
Jul 18, 2021
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000722581705038