Epistemic Extensions of Substructural Inquisitive Logics
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F21%3A00542814" target="_blank" >RIV/67985807:_____/21:00542814 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1093/logcom/exab008" target="_blank" >http://dx.doi.org/10.1093/logcom/exab008</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1093/logcom/exab008" target="_blank" >10.1093/logcom/exab008</a>
Alternative languages
Result language
angličtina
Original language name
Epistemic Extensions of Substructural Inquisitive Logics
Original language description
In this paper, we study the epistemic extensions of distributive substructural inquisitive logics. Substructural inquisitive logics are logics of questions based on substructural logics of declarative sentences. They generalize basic inquisitive logic which is based on the classical logic of declaratives. We show that if the underlying substructural logic is distributive, the generalization can be extended to embrace also the epistemic modalities ‘knowing whether’ and ‘wondering whether’ that are applicable to questions. We construct a semantic framework for a language of propositional substructural logics enriched with a question-forming operator (inquisitive disjunction) and epistemic modalities. We show that within this framework, one can define a canonical model with suitable properties for any (syntactically defined) epistemic inquisitive logic. This leads to a general approach to completeness proofs for such logics. A deductive system for the weakest epistemic inquisitive logic is described and completeness proved for this special case using the general method.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GJ18-19162Y" target="_blank" >GJ18-19162Y: Non-classical logical models of information dynamics</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Logic and Computation
ISSN
0955-792X
e-ISSN
1465-363X
Volume of the periodical
31
Issue of the periodical within the volume
7
Country of publishing house
GB - UNITED KINGDOM
Number of pages
25
Pages from-to
1820-1844
UT code for WoS article
000715358800011
EID of the result in the Scopus database
2-s2.0-85119488751