All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Substructural inquisitive logics

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985955%3A_____%2F19%3A00505202" target="_blank" >RIV/67985955:_____/19:00505202 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.cambridge.org/core/journals/review-of-symbolic-logic/article/substructural-inquisitive-logics/81285524FFC11723B452B2D8434FEF79" target="_blank" >https://www.cambridge.org/core/journals/review-of-symbolic-logic/article/substructural-inquisitive-logics/81285524FFC11723B452B2D8434FEF79</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1017/S1755020319000017" target="_blank" >10.1017/S1755020319000017</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Substructural inquisitive logics

  • Original language description

    This paper shows that any propositional logic that extends a basic substructural logic BSL (a weak, nondistributive, nonassociative, and noncommutative version of Full Lambek logic with a paraconsistent negation) can be enriched with questions in the style of inquisitive semantics and logic. We introduce a relational semantic framework for substructural logics that enables us to define the notion of an inquisitive extension of λ, denoted as λ?, for any logic λ that is at least as strong as BSL. A general theory of these “inquisitive extensions” is worked out. In particular, it is shown how to axiomatize  λ?, given the axiomatization of λ. Furthermore, the general theory is applied to some prominent logical systems in the class: classical logic Cl, intuitionistic logic Int, and t-norm based fuzzy logics, including for example Łukasiewicz fuzzy logic Ł. For the inquisitive extensions of these logics, axiomatization is provided and a suitable semantics found.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    60301 - Philosophy, History and Philosophy of science and technology

Result continuities

  • Project

    <a href="/en/project/GC16-07954J" target="_blank" >GC16-07954J: From Shared Evidence to Group Attitudes</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Review of Symbolic Logic

  • ISSN

    1755-0203

  • e-ISSN

  • Volume of the periodical

    12

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    35

  • Pages from-to

    296-330

  • UT code for WoS article

    000492905300001

  • EID of the result in the Scopus database

    2-s2.0-85060990852