Substructural inquisitive logics
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985955%3A_____%2F19%3A00505202" target="_blank" >RIV/67985955:_____/19:00505202 - isvavai.cz</a>
Result on the web
<a href="https://www.cambridge.org/core/journals/review-of-symbolic-logic/article/substructural-inquisitive-logics/81285524FFC11723B452B2D8434FEF79" target="_blank" >https://www.cambridge.org/core/journals/review-of-symbolic-logic/article/substructural-inquisitive-logics/81285524FFC11723B452B2D8434FEF79</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1017/S1755020319000017" target="_blank" >10.1017/S1755020319000017</a>
Alternative languages
Result language
angličtina
Original language name
Substructural inquisitive logics
Original language description
This paper shows that any propositional logic that extends a basic substructural logic BSL (a weak, nondistributive, nonassociative, and noncommutative version of Full Lambek logic with a paraconsistent negation) can be enriched with questions in the style of inquisitive semantics and logic. We introduce a relational semantic framework for substructural logics that enables us to define the notion of an inquisitive extension of λ, denoted as λ?, for any logic λ that is at least as strong as BSL. A general theory of these “inquisitive extensions” is worked out. In particular, it is shown how to axiomatize λ?, given the axiomatization of λ. Furthermore, the general theory is applied to some prominent logical systems in the class: classical logic Cl, intuitionistic logic Int, and t-norm based fuzzy logics, including for example Łukasiewicz fuzzy logic Ł. For the inquisitive extensions of these logics, axiomatization is provided and a suitable semantics found.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
60301 - Philosophy, History and Philosophy of science and technology
Result continuities
Project
<a href="/en/project/GC16-07954J" target="_blank" >GC16-07954J: From Shared Evidence to Group Attitudes</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Review of Symbolic Logic
ISSN
1755-0203
e-ISSN
—
Volume of the periodical
12
Issue of the periodical within the volume
2
Country of publishing house
GB - UNITED KINGDOM
Number of pages
35
Pages from-to
296-330
UT code for WoS article
000492905300001
EID of the result in the Scopus database
2-s2.0-85060990852