Profiniteness and representability of spectra of Heyting algebras
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F21%3A00545611" target="_blank" >RIV/67985807:_____/21:00545611 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.aim.2021.107959" target="_blank" >http://dx.doi.org/10.1016/j.aim.2021.107959</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.aim.2021.107959" target="_blank" >10.1016/j.aim.2021.107959</a>
Alternative languages
Result language
angličtina
Original language name
Profiniteness and representability of spectra of Heyting algebras
Original language description
We prove that there exist profinite Heyting algebras that are not isomorphic to the profinite completion of any Heyting algebra. This resolves an open problem from 2009. More generally, we characterize those varieties of Heyting algebras in which profinite algebras are isomorphic to profinite completions. It turns out that there exists largest such. We give different characterizations of this variety and show that it is finitely axiomatizable and locally finite. From this it follows that it is decidable whether in a finitely axiomatizable variety of Heyting algebras all profinite members are profinite completions. In addition, we introduce and characterize representable varieties of Heyting algebras, thus drawing connection to the classical problem of representing posets as prime spectra.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Advances in Mathematics
ISSN
0001-8708
e-ISSN
1090-2082
Volume of the periodical
391
Issue of the periodical within the volume
19 November 2021
Country of publishing house
US - UNITED STATES
Number of pages
47
Pages from-to
107959
UT code for WoS article
000701013100008
EID of the result in the Scopus database
2-s2.0-85113372379