Codegree conditions for cycle decompositions and Euler tours in 3-uniform hypergraphs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F21%3A00554126" target="_blank" >RIV/67985807:_____/21:00554126 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.procs.2021.11.043" target="_blank" >http://dx.doi.org/10.1016/j.procs.2021.11.043</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.procs.2021.11.043" target="_blank" >10.1016/j.procs.2021.11.043</a>
Alternative languages
Result language
angličtina
Original language name
Codegree conditions for cycle decompositions and Euler tours in 3-uniform hypergraphs
Original language description
We show that 3-graphs whose codegree is at least (2/3 + o(1))n can be decomposed into tight cycles and admit Euler tours, subject to the trivial necessary divisibility conditions. We also provide a construction showing that our bounds are best possible up to the o(1) term. All together, our results answer in the negative some recent questions of Glock, Joos, Kühn and Osthus.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA19-08740S" target="_blank" >GA19-08740S: Embedding, Packing and Limits in Graphs</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Procedia Computer Science
ISBN
—
ISSN
1877-0509
e-ISSN
—
Number of pages
9
Pages from-to
350-358
Publisher name
Elsevier
Place of publication
Amsterdam
Event location
Sao Paulo
Event date
May 17, 2021
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000760223100038