All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Dirac-Type Conditions for Spanning Bounded-Degree Hypertrees

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F21%3A00581994" target="_blank" >RIV/67985807:_____/21:00581994 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-030-83823-2_94" target="_blank" >http://dx.doi.org/10.1007/978-3-030-83823-2_94</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-83823-2_94" target="_blank" >10.1007/978-3-030-83823-2_94</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Dirac-Type Conditions for Spanning Bounded-Degree Hypertrees

  • Original language description

    We prove that for fixed k, every k-uniform hypergraph on n vertices and of minimum codegree at least n/2 + o(n) contains every spanning tight k-tree of bounded vertex degree as a subgraph. This generalises a well-known result of Komlós, Sárközy and Szemerédi for graphs. Our result is asymptotically sharp.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA19-08740S" target="_blank" >GA19-08740S: Embedding, Packing and Limits in Graphs</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Extended Abstracts EuroComb 2021

  • ISBN

    978-3-030-83822-5

  • ISSN

    2297-0215

  • e-ISSN

  • Number of pages

    7

  • Pages from-to

    586-592

  • Publisher name

    Birkhäuser / Springer

  • Place of publication

    Cham

  • Event location

    Barcelona / Online

  • Event date

    Sep 6, 2021

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article