Towards a hypergraph version of the Pósa-Seymour conjecture
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F23%3A00581959" target="_blank" >RIV/67985807:_____/23:00581959 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.19086/aic.2023.3" target="_blank" >https://doi.org/10.19086/aic.2023.3</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.19086/aic.2023.3" target="_blank" >10.19086/aic.2023.3</a>
Alternative languages
Result language
angličtina
Original language name
Towards a hypergraph version of the Pósa-Seymour conjecture
Original language description
We prove that for fixed r ≥ k ≥ 2 , every k-uniform hypergraph on n vertices having minimum codegree at least (1 − (r−1/ k−1) + (r−2 / k−2) −1) n + o(n) contains the (r − k + 1)th power of a tight Hamilton cycle. This result may be seen as a step towards a hypergraph version of the Pósa–Seymour conjecture. Moreover, we prove that the same bound on the codegree suffices for finding a copy of every spanning hypergraph of tree-width less than r which admits a tree decomposition where every vertex is in a bounded number of bags
Czech name
—
Czech description
—
Classification
Type
J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA19-08740S" target="_blank" >GA19-08740S: Embedding, Packing and Limits in Graphs</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Advances in Combinatorics
ISSN
2517-5599
e-ISSN
—
Volume of the periodical
2023
Issue of the periodical within the volume
July
Country of publishing house
GB - UNITED KINGDOM
Number of pages
29
Pages from-to
3
UT code for WoS article
—
EID of the result in the Scopus database
2-s2.0-85166050383