Finite Embeddability Property for Residuated Lattices via Regular Languages
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F22%3A00550967" target="_blank" >RIV/67985807:_____/22:00550967 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-030-76920-8_7" target="_blank" >http://dx.doi.org/10.1007/978-3-030-76920-8_7</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-76920-8_7" target="_blank" >10.1007/978-3-030-76920-8_7</a>
Alternative languages
Result language
angličtina
Original language name
Finite Embeddability Property for Residuated Lattices via Regular Languages
Original language description
Let V be a variety of residuated lattices axiomatized by a set of identities in the language {∨,⋅,1} . We characterize when V has the finite embeddability property via regularity of a certain collection of languages. Several applications of this characterization are presented.
Czech name
—
Czech description
—
Classification
Type
C - Chapter in a specialist book
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Center of excellence - Institute for theoretical computer science (CE-ITI)</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Book/collection name
Hiroakira Ono on Substructural Logics
ISBN
978-3-030-76919-2
Number of pages of the result
26
Pages from-to
273-298
Number of pages of the book
375
Publisher name
Springer
Place of publication
Cham
UT code for WoS chapter
—