Learning Higher-Order Logic Programs From Failures
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F22%3A00559054" target="_blank" >RIV/67985807:_____/22:00559054 - isvavai.cz</a>
Result on the web
<a href="https://dx.doi.org/10.24963/ijcai.2022/378" target="_blank" >https://dx.doi.org/10.24963/ijcai.2022/378</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.24963/ijcai.2022/378" target="_blank" >10.24963/ijcai.2022/378</a>
Alternative languages
Result language
angličtina
Original language name
Learning Higher-Order Logic Programs From Failures
Original language description
Learning complex programs through inductive logic programming (ILP) remains a formidable challenge. Existing higher-order enabled ILP systems show improved accuracy and learning performance, though remain hampered by the limitations of the underlying learning mechanism. Experimental results show that our extension of the versatile Learning From Failures paradigm by higher-order definitions significantly improves learning performance without the666 burdensome human guidance required by existing systems. Our theoretical framework captures a class of higher-order definitions preserving soundness of existing subsumption-based pruning methods.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/EF18_053%2F0017594" target="_blank" >EF18_053/0017594: Supporting the internationalization of the Institute of Computer Science of the Czech Academy of Sciences</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)
ISBN
978-1-956792-00-3
ISSN
—
e-ISSN
—
Number of pages
8
Pages from-to
2726-2733
Publisher name
International Joint Conferences on Artificial Intelligence
Place of publication
Vienna
Event location
Vienna
Event date
Jul 23, 2022
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—