All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Graph Embedding for Neural Architecture Search with Input-Output Information

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F22%3A00560713" target="_blank" >RIV/67985807:_____/22:00560713 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Graph Embedding for Neural Architecture Search with Input-Output Information

  • Original language description

    ZÁKLADNÍ ÚDAJE: Auto-ML Conf 2022: Accepted Papers: Late-Breaking Workshop. Baltimore: AutoML Conference, 2022. KONFERENCE: Auto-ML 2022: International Conference on Automated Machine Learning /1./. Baltimore (US), 25.07.2022-27.07.2022. ABSTRAKT: Graph representation learning has been widely used in neural architecture search as a part of performance prediction models. Existing works focused mostly on neural graph similarity without considering functionally similar networks with different architectures. In this work, we address this issue by using meta-information of input images and output features of a particular neural network. We extended the arch2vec model, a graph variational autoencoder for neural architecture search, to learn from this novel kind of data in a semi-supervised manner. We demonstrate our approach on the NAS-Bench-101 search space and the CIFAR10 dataset, and compare our model with the original arch2vec on a REINFORCE search task and a performance prediction task. We also present a semi-supervised accuracy predictor, and we discuss the advantages of both variants. The results are competitive with the original model and show improved performance.

  • Czech name

  • Czech description

Classification

  • Type

    O - Miscellaneous

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů