All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Label Propagation for Deep Semi-supervised Learning

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F19%3A00335654" target="_blank" >RIV/68407700:21230/19:00335654 - isvavai.cz</a>

  • Result on the web

    <a href="https://ieeexplore.ieee.org/document/8954421" target="_blank" >https://ieeexplore.ieee.org/document/8954421</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/CVPR.2019.00521" target="_blank" >10.1109/CVPR.2019.00521</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Label Propagation for Deep Semi-supervised Learning

  • Original language description

    Semi-supervised learning is becoming increasingly important because it can combine data carefully labeled by humans with abundant unlabeled data to train deep neural networks. Classic methods on semi-supervised learning that have focused on transductive learning have not been fully exploited in the inductive framework followed by modern deep learning. The same holds for the manifold assumption---that similar examples should get the same prediction. In this work, we employ a transductive label propagation method that is based on the manifold assumption to make predictions on the entire dataset and use these predictions to generate pseudo-labels for the unlabeled data and train a deep neural network. At the core of the transductive method lies a nearest neighbor graph of the dataset that we create based on the embeddings of the same network. Therefore our learning process iterates between these two steps. We improve performance on several datasets especially in the few labels regime and show that our work is complementary to current state of the art.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    CVPR 2019: Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition

  • ISBN

    978-1-7281-3293-8

  • ISSN

    1063-6919

  • e-ISSN

    2575-7075

  • Number of pages

    10

  • Pages from-to

    5065-5074

  • Publisher name

    IEEE

  • Place of publication

  • Event location

    Long Beach

  • Event date

    Jun 15, 2019

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article