All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Two Semi-supervised Approaches to Malware Detection with Neural Networks

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F20%3A00342838" target="_blank" >RIV/68407700:21240/20:00342838 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Two Semi-supervised Approaches to Malware Detection with Neural Networks

  • Original language description

    Semi-supervised learning is characterized by using the additional information from the unlabeled data. In this paper, we compare two semi-supervised algorithms for deep neural networks on a large real-world malware dataset. Specifically, we evaluate the performance of a rather straightforward method called Pseudo-labeling, which uses unlabeled samples, classified with high confidence, as if they were the actual labels. The second approach is based on an idea to increase the consistency of the network’s prediction under altered circumstances. We implemented such an algorithm called Π-model, which compares outputs with different data augmentation and different dropout setting. As a baseline, we also provide results of the same deep network, trained in the fully supervised mode using only the labeled data. We analyze the prediction accuracy of the algorithms in relation to the size of the labeled part of the training dataset.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the 20th Conference Information Technologies - Applications and Theory (ITAT 2020)

  • ISBN

  • ISSN

    1613-0073

  • e-ISSN

    1613-0073

  • Number of pages

    10

  • Pages from-to

    176-185

  • Publisher name

    CEUR Workshop Proceedings

  • Place of publication

    Aachen

  • Event location

    hotel Tyrapol, Oravská Lesná

  • Event date

    Sep 18, 2020

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article