All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Robust Coefficients of Correlation or Spatial Autocorrelation Based on Implicit Weighting

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F22%3A00560805" target="_blank" >RIV/67985807:_____/22:00560805 - isvavai.cz</a>

  • Result on the web

    <a href="https://dx.doi.org/10.1007/s42952-022-00184-2" target="_blank" >https://dx.doi.org/10.1007/s42952-022-00184-2</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s42952-022-00184-2" target="_blank" >10.1007/s42952-022-00184-2</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Robust Coefficients of Correlation or Spatial Autocorrelation Based on Implicit Weighting

  • Original language description

    Pearson product-moment correlation coefficient represents a fundamental tool for measuring linear association between two data vectors. In various applications, it is often reasonable to consider its weighted version known as the weighted correlation coefficient. This paper starts with theoretical considerations related to properties of the weighted correlation coefficient, particularly to its local robustness and relationship to other similarity measures. Inspired by the least weighted squares regression estimator, a robust correlation coefficient is investigated here together with its spatial autocorrelation extension. Finally, the considered methods are investigated in two image processing tasks.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10103 - Statistics and probability

Result continuities

  • Project

    <a href="/en/project/GA22-02067S" target="_blank" >GA22-02067S: AppNeCo: Approximate Neurocomputing</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of the Korean Statistical Society

  • ISSN

    1226-3192

  • e-ISSN

    2005-2863

  • Volume of the periodical

    51

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    KR - KOREA, REPUBLIC OF

  • Number of pages

    21

  • Pages from-to

    1247-1267

  • UT code for WoS article

    000844582800001

  • EID of the result in the Scopus database

    2-s2.0-85137029438