Robust Coefficients of Correlation or Spatial Autocorrelation Based on Implicit Weighting
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F22%3A00560805" target="_blank" >RIV/67985807:_____/22:00560805 - isvavai.cz</a>
Result on the web
<a href="https://dx.doi.org/10.1007/s42952-022-00184-2" target="_blank" >https://dx.doi.org/10.1007/s42952-022-00184-2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s42952-022-00184-2" target="_blank" >10.1007/s42952-022-00184-2</a>
Alternative languages
Result language
angličtina
Original language name
Robust Coefficients of Correlation or Spatial Autocorrelation Based on Implicit Weighting
Original language description
Pearson product-moment correlation coefficient represents a fundamental tool for measuring linear association between two data vectors. In various applications, it is often reasonable to consider its weighted version known as the weighted correlation coefficient. This paper starts with theoretical considerations related to properties of the weighted correlation coefficient, particularly to its local robustness and relationship to other similarity measures. Inspired by the least weighted squares regression estimator, a robust correlation coefficient is investigated here together with its spatial autocorrelation extension. Finally, the considered methods are investigated in two image processing tasks.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10103 - Statistics and probability
Result continuities
Project
<a href="/en/project/GA22-02067S" target="_blank" >GA22-02067S: AppNeCo: Approximate Neurocomputing</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of the Korean Statistical Society
ISSN
1226-3192
e-ISSN
2005-2863
Volume of the periodical
51
Issue of the periodical within the volume
4
Country of publishing house
KR - KOREA, REPUBLIC OF
Number of pages
21
Pages from-to
1247-1267
UT code for WoS article
000844582800001
EID of the result in the Scopus database
2-s2.0-85137029438