All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Properties of the Weighted and Robust Implicitly Weighted Correlation Coefficients

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F23%3A00577080" target="_blank" >RIV/67985807:_____/23:00577080 - isvavai.cz</a>

  • Result on the web

    <a href="https://dx.doi.org/10.1007/978-3-031-44201-8_17" target="_blank" >https://dx.doi.org/10.1007/978-3-031-44201-8_17</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-44201-8_17" target="_blank" >10.1007/978-3-031-44201-8_17</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Properties of the Weighted and Robust Implicitly Weighted Correlation Coefficients

  • Original language description

    Pearson product-moment correlation coefficient represents a fundamental measure of similarity between two data vectors. In various applications, it is meaningful to consider its weighted version known as the weighted Pearson correlation coefficient. Its properties are studied in this theoretical paper - these include the robustness to rounding, as it is an important issue in approximate neurocomputing, or specific robustness properties for the context of template matching in image analysis. For a highly robust correlation coefficient inspired by the least weighted estimator, properties are derived and novel hypothesis tests are proposed. This robust measure is recommendable particularly for data contaminated by outliers (not only) in the context of image analysis.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GA22-02067S" target="_blank" >GA22-02067S: AppNeCo: Approximate Neurocomputing</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Artificial Neural Networks and Machine Learning – ICANN 2023. Proceedings, Part IX

  • ISBN

    978-3-031-44200-1

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    13

  • Pages from-to

    200-212

  • Publisher name

    Springer

  • Place of publication

    Cham

  • Event location

    Heraklion

  • Event date

    Sep 26, 2023

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    001157308600017