Compression complexity with ordinal patterns for robust causal inference in irregularly sampled time series
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F22%3A00562624" target="_blank" >RIV/67985807:_____/22:00562624 - isvavai.cz</a>
Result on the web
<a href="https://dx.doi.org/10.1038/s41598-022-18288-4" target="_blank" >https://dx.doi.org/10.1038/s41598-022-18288-4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1038/s41598-022-18288-4" target="_blank" >10.1038/s41598-022-18288-4</a>
Alternative languages
Result language
angličtina
Original language name
Compression complexity with ordinal patterns for robust causal inference in irregularly sampled time series
Original language description
Distinguishing cause from effect is a scientific challenge resisting solutions from mathematics, statistics, information theory and computer science. Compression-Complexity Causality (CCC) is a recently proposed interventional measure of causality, inspired by Wiener-Granger's idea. It estimates causality based on change in dynamical compression-complexity (or compressibility) of the effect variable, given the cause variable. CCC works with minimal assumptions on given data and is robust to irregular-sampling, missing-data and finite-length effects. However, it only works for one-dimensional time series. We propose an ordinal pattern symbolization scheme to encode multidimensional patterns into one-dimensional symbolic sequences, and thus introduce the Permutation CCC (PCCC). We demonstrate that PCCC retains all advantages of the original CCC and can be applied to data from multidimensional systems with potentially unobserved variables which can be reconstructed using the embedding theorem. PCCC is tested on numerical simulations and applied to paleoclimate data characterized by irregular and uncertain sampling and limited numbers of samples.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/GA19-16066S" target="_blank" >GA19-16066S: Nonlinear interactions and information transfer in complex systems with extreme events</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Scientific Reports
ISSN
2045-2322
e-ISSN
2045-2322
Volume of the periodical
12
Issue of the periodical within the volume
1
Country of publishing house
GB - UNITED KINGDOM
Number of pages
14
Pages from-to
14170
UT code for WoS article
000842561700007
EID of the result in the Scopus database
2-s2.0-85137007420