Causality Preserving Chaotic Transformation and Classification using Neurochaos Learning
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F22%3A00570030" target="_blank" >RIV/67985807:_____/22:00570030 - isvavai.cz</a>
Result on the web
<a href="https://proceedings.neurips.cc/paper_files/paper/2022/file/0d9057d84a9fc37523bf826232ea6820-Paper-Conference.pdf" target="_blank" >https://proceedings.neurips.cc/paper_files/paper/2022/file/0d9057d84a9fc37523bf826232ea6820-Paper-Conference.pdf</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Causality Preserving Chaotic Transformation and Classification using Neurochaos Learning
Original language description
Discovering cause and effect variables from observational data is an important but challenging problem in science and engineering. In this work, a recently proposed brain inspired learning algorithm namely-Neurochaos Learning (NL) is used for the classification of cause and effect time series generated using coupled autoregressive processes, coupled 1D chaotic skew tent maps, coupled 1D chaotic logistic maps and a real-world prey-predator system. In the case of coupled skew tent maps, the proposed method consistently outperforms a five layer Deep Neural Network (DNN) and Long Short Term Memory (LSTM) architecture for unidirectional coupling coefficient values ranging from 0.1 to 0.7. Further, we investigate the preservation of causality in the feature extracted space of NL using Granger Causality for coupled autoregressive processes and Compression-Complexity Causality for coupled chaotic systems and real-world prey-predator dataset. Unlike DNN, LSTM and 1D Convolutional Neural Network, it is found that NL preserves the inherent causal structures present in the input timeseries data. These findings are promising for the theory and applications of causal machine learning and open up the possibility to explore the potential of NL for more sophisticated causal learning tasks.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA19-16066S" target="_blank" >GA19-16066S: Nonlinear interactions and information transfer in complex systems with extreme events</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Advances in Neural Information Processing Systems 35 (NeurIPS 2022)
ISBN
978-171387108-8
ISSN
1049-5258
e-ISSN
—
Number of pages
13
Pages from-to
189185
Publisher name
Curran Associates
Place of publication
New Orleans
Event location
New Orleans / virtual
Event date
Nov 28, 2022
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—