All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Persistent homology to analyse disruptions of functional and effective brain connectivity

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F22%3A00568775" target="_blank" >RIV/67985807:_____/22:00568775 - isvavai.cz</a>

  • Result on the web

    <a href="https://dx.doi.org/10.5072/zenodo.1154242" target="_blank" >https://dx.doi.org/10.5072/zenodo.1154242</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Persistent homology to analyse disruptions of functional and effective brain connectivity

  • Original language description

    ZÁKLADNÍ ÚDAJE: The 11th International Conference on Complex Networks and their Applications - Book of Abstracts. Palermo: 12th International Conference on Complex Networks and their Applications, 2023. s. 513-514. ISBN 978-2-9557050-6-3. KONFERENCE: COMPLEX NETWORKS 2023: The 12th International Conference on Complex Networks and their Applications. 28.11.2023-30.11.2023, French Riviera]. ABSTRAKT: Topological Data Analysis (TDA [1]), despite its relative novelty, has already been applied to study network connectivity structure across fields. We propose that its prominent tool of persistent homology (PH) may apart from the more common dependence networks (functional connectivity – FC) be applied also to directed, causal, networks – known as effective connectivity (EC) in neuroscience. We test the PH discriminatory power in two archetypal examples of disease-related brain connectivity alterations: during epilepsy seizures (captured by electrophysiology – EEG) and in schizophrenia patients (using functional magnetic resonance imaging - fMRI). We employ a range of PH-based features and quantify ability to distinguish healthy from diseased brain states by applying a support vector machine (SVM), a relatively standard method of choice for similar data situations, used also previously in similar context. We compare this novel approach to using standard undirected PH applied to the functional connectivity matrix, as well as comparing the (D)PH approach to using the raw EC/FC matrices [2]

  • Czech name

  • Czech description

Classification

  • Type

    O - Miscellaneous

  • CEP classification

  • OECD FORD branch

    30103 - Neurosciences (including psychophysiology)

Result continuities

  • Project

    <a href="/en/project/GA21-17211S" target="_blank" >GA21-17211S: Network modelling of complex systems: from correlation graphs to information hypergraphs</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů