All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Approximation of Classifiers by Deep Perceptron Networks

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F23%3A00572576" target="_blank" >RIV/67985807:_____/23:00572576 - isvavai.cz</a>

  • Result on the web

    <a href="https://dx.doi.org/10.1016/j.neunet.2023.06.004" target="_blank" >https://dx.doi.org/10.1016/j.neunet.2023.06.004</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.neunet.2023.06.004" target="_blank" >10.1016/j.neunet.2023.06.004</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Approximation of Classifiers by Deep Perceptron Networks

  • Original language description

    We employ properties of high-dimensional geometry to obtain some insights into capabilities of deep perceptron networks to classify large data sets. We derive conditions on network depths, types of activation functions, and numbers of parameters that imply that approximation errors behave almost deterministically. We illustrate general results by concrete cases of popular activation functions: Heaviside, ramp sigmoid, rectified linear, and rectified power. Our probabilistic bounds on approximation errors are derived using concentration of measure type inequalities (method of bounded differences) and concepts from statistical learning theory.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GA22-02067S" target="_blank" >GA22-02067S: AppNeCo: Approximate Neurocomputing</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Neural Networks

  • ISSN

    0893-6080

  • e-ISSN

    1879-2782

  • Volume of the periodical

    165

  • Issue of the periodical within the volume

    August 2023

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    8

  • Pages from-to

    654-661

  • UT code for WoS article

    001058145100001

  • EID of the result in the Scopus database

    2-s2.0-85163371420