All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Estimating the false discovery risk of (randomized) clinical trials in medical journals based on published p-values

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F23%3A00576101" target="_blank" >RIV/67985807:_____/23:00576101 - isvavai.cz</a>

  • Result on the web

    <a href="https://dx.doi.org/10.1371/journal.pone.0290084" target="_blank" >https://dx.doi.org/10.1371/journal.pone.0290084</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1371/journal.pone.0290084" target="_blank" >10.1371/journal.pone.0290084</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Estimating the false discovery risk of (randomized) clinical trials in medical journals based on published p-values

  • Original language description

    Many sciences are facing a crisis of confidence in published results [1]. Meta-scientific studies have revealed low replication rates, estimates of low statistical power, and even reports of scientific misconduct [2]. Based on assumptions about the percentage of true hypotheses and statistical power to test them, Ioannidis [3] arrived at the conclusion that most published results are false. It has proven difficult to test this prediction. First, large scale replication attempts [4–6] are inherently expensive and focus only on a limited set of pre-selected findings [7]. Second, studies of meta-analyses have revealed that power is low, but rarely lead to the conclusion that the null-hypothesis is true [8–16] (but see [17, 18]). So far, the most promising attempt to estimate the false discovery rate has been Jager and Leek’s [19] investigation of p-values in medical journals. They extracted 5,322 p-values from abstracts of medical journals and found that only 14% of the statistically significant results may be false-positives. This is a sizeable percentage, but it is inconsistent with the claim that most published results are false. Although Jager and Leek’s article was based on actual data, the article had a relatively minor impact on discussions about false-positive risks, possibly due to several limitations of their study [20–23]. One problem of their estimation method is the problem to distinguish between true null-hypotheses (i.e., the effect size is exactly zero) and studies with very low power in which the effect size may be very small, but not zero. To avoid this problem, we do not estimate the actual percentage of false positives, but rather the maximum percentage that is consistent with the data. We call this estimate the false discovery risk (FDR). To estimate the FDR, we take advantage of Sorić’s [24] insight that the false discovery risk is maximized when power to detect true effects is 100%. In this scenario, the false discovery rate is a simple function of the discovery rate (i.e., the percentage of significant results). Thus, the main challenge for empirical studies of FDR is to estimate the discovery rate when selection bias is present and inflates the observed discovery rate. To address the problem of selection bias, we developed a selection model that can provide an estimate of the discovery rate before selection for significance. The method section provides a detailed account of our method and compares it to Jager and Leek’s [19] approach.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database

  • CEP classification

  • OECD FORD branch

    10103 - Statistics and probability

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    PLoS ONE

  • ISSN

    1932-6203

  • e-ISSN

    1932-6203

  • Volume of the periodical

    18

  • Issue of the periodical within the volume

    8

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    12

  • Pages from-to

    e0290084

  • UT code for WoS article

  • EID of the result in the Scopus database

    2-s2.0-85169230576