All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Fractionally Isomorphic Graphs and Graphons

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F23%3A00583814" target="_blank" >RIV/67985807:_____/23:00583814 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.5817/CZ.MUNI.EUROCOMB23-080" target="_blank" >https://doi.org/10.5817/CZ.MUNI.EUROCOMB23-080</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.5817/CZ.MUNI.EUROCOMB23-080" target="_blank" >10.5817/CZ.MUNI.EUROCOMB23-080</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Fractionally Isomorphic Graphs and Graphons

  • Original language description

    Fractional isomorphism is a well-studied relaxation of graph isomorphism with a very rich theory. Grebík and Rocha [Combinatorica 42, pp 365–404 (2022)] developed a concept of fractional isomorphism for graphons and proved that it enjoys an analogous theory. In particular, they proved that if two sequences of graphs that are fractionally isomorphic converge to two graphons, then these graphons are fractionally isomorphism. Answering the main question from ibid, we prove the converse of the statement above: If we have two fractionally isomorphic graphons, then there exist sequences of graphs that are fractionally isomorphic converge and converge to these respective graphons. As an easy but convenient corollary of our methods, we get that every regular graphon can be approximated by regular graphs.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GX21-21762X" target="_blank" >GX21-21762X: Graph limits and beyond</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    EUROCOMB’23. Proceedings of the 12th European Conference on Combinatorics, Graph Theory and Applications

  • ISBN

  • ISSN

    2788-3116

  • e-ISSN

    2788-3116

  • Number of pages

    8

  • Pages from-to

    579-586

  • Publisher name

    MUNI Press

  • Place of publication

    Brno

  • Event location

    Prague

  • Event date

    Aug 28, 2023

  • Type of event by nationality

    EUR - Evropská akce

  • UT code for WoS article