Taming the 'Elsewhere': On Expressivity of Topological Languages
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F24%3A00558050" target="_blank" >RIV/67985807:_____/24:00558050 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1017/S1755020322000120" target="_blank" >http://dx.doi.org/10.1017/S1755020322000120</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1017/S1755020322000120" target="_blank" >10.1017/S1755020322000120</a>
Alternative languages
Result language
angličtina
Original language name
Taming the 'Elsewhere': On Expressivity of Topological Languages
Original language description
In topological modal logic, it is well known that the Cantor derivative is more expressive than the topological closure, and the ‘elsewhere’, or ‘difference’, operator is more expressive than the ‘somewhere’ operator. In 2014, Kudinov and Shehtman asked whether the combination of closure and elsewhere becomes strictly more expressive when adding the Cantor derivative. In this paper we give an affirmative answer: in fact, the Cantor derivative alone can define properties of topological spaces not expressible with closure and elsewhere. To prove this, we develop a novel theory of morphisms which preserve formulas with the elsewhere operator.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Review of Symbolic Logic
ISSN
1755-0203
e-ISSN
1755-0211
Volume of the periodical
17
Issue of the periodical within the volume
1
Country of publishing house
GB - UNITED KINGDOM
Number of pages
10
Pages from-to
144-153
UT code for WoS article
000780877900001
EID of the result in the Scopus database
2-s2.0-85128472862