All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Online Learning and Control for Data-Augmented Quadrotor Model

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F24%3A00600830" target="_blank" >RIV/67985807:_____/24:00600830 - isvavai.cz</a>

  • Alternative codes found

    RIV/49777513:23520/24:43973102

  • Result on the web

    <a href="https://doi.org/10.1016/j.ifacol.2024.08.532" target="_blank" >https://doi.org/10.1016/j.ifacol.2024.08.532</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.ifacol.2024.08.532" target="_blank" >10.1016/j.ifacol.2024.08.532</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Online Learning and Control for Data-Augmented Quadrotor Model

  • Original language description

    The ability to adapt to changing conditions is a key feature of a successful autonomous system. In this work, we use the Recursive Gaussian Processes (RGP) for identification of the quadrotor air drag model online, without the need to precollect training data. The identified drag model then augments a physics-based model of the quadrotor dynamics, which allows more accurate quadrotor state prediction with increased ability to adapt to changing conditions. This data-augmented physics-based model is utilized for precise quadrotor trajectory tracking using the suitably modified Model Predictive Control (MPC) algorithm. The proposed modelling and control approach is evaluated using the Gazebo simulator and it is shown that the proposed approach tracks a desired trajectory with a higher accuracy compared to the MPC with the non-augmented (purely physics-based) model.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20204 - Robotics and automatic control

Result continuities

  • Project

    <a href="/en/project/EH22_008%2F0004590" target="_blank" >EH22_008/0004590: Robotics and advanced industrial production</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    IFAC-PapersOnLine. Volume 58, Issue 15. 20th IFAC Symposium on System Identification SYSID 2024

  • ISBN

  • ISSN

    2405-8971

  • e-ISSN

    2405-8963

  • Number of pages

    6

  • Pages from-to

    223-228

  • Publisher name

    Elsevier

  • Place of publication

    Amsterdam

  • Event location

    Boston

  • Event date

    Jul 17, 2024

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    001316057100038