Advances in Modal Logic, Volume 15
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F24%3A00603595" target="_blank" >RIV/67985807:_____/24:00603595 - isvavai.cz</a>
Result on the web
<a href="https://www.collegepublications.co.uk/aiml/?00012" target="_blank" >https://www.collegepublications.co.uk/aiml/?00012</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Advances in Modal Logic, Volume 15
Original language description
ZÁKLADNÍ ÚDAJE: London: College Publications, 2024. 774 s. Advances in Modal Logic, Vol. 15. ISBN 978-1-84890-467-5 (editorství sborníku). [AiML 2024: Advances in Modal Logic /15./. Prague (CZ), 19.08.2024-22.08.2024] ABSTRAKT: Since ancient times, philosophers have recognised that truth comes in many 'modes', so that a proposition can be not only true or false, but also, for example, 'necessary' or 'possible'. These ideas led to the modern field of modal logic, a lively area of research at the interface of philosophy, mathematics and computer science. Nowadays, the term 'modal logic' is understood in a broad sense, allowing it to encompass logics for reasoning about seemingly unrelated phenomena such as knowledge, obligations, time, space, and proofs, among many others. Contemporary research in modal logic draws on techniques from many disciplines, including complexity theory, combinatorics, universal algebra, category theory, topology, and proof theory. These proceedings record the papers presented at Advances in Modal Logic 2024, the 15th in a series of biennial conferences that aim to report on important new developments in pure and applied modal logic. Topics in this issue include epistemic modal logic, constructive and many-valued modal logic, unification, algebraic and neighbourhood semantics, proof theory and complexity of modal logics, conditional and quantified modal logic.
Czech name
—
Czech description
—
Classification
Type
O - Miscellaneous
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů