Proof systems for Moss' coalgebraic logic
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11210%2F14%3A10279707" target="_blank" >RIV/00216208:11210/14:10279707 - isvavai.cz</a>
Result on the web
<a href="http://www.sciencedirect.com/science/article/pii/S0304397514004423" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0304397514004423</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.tcs.2014.06.018" target="_blank" >10.1016/j.tcs.2014.06.018</a>
Alternative languages
Result language
angličtina
Original language name
Proof systems for Moss' coalgebraic logic
Original language description
We study Gentzen-style proof theory of the finitary version of the coalgebraic logic introduced by L. Moss. The logic captures the behaviour of coalgebras for a large class of set functors. The syntax of the logic, defined uniformly with respect to a finitary coalgebraic type functor T, uses a single modal operator of arity given by the functor T itself, and its semantics is defined in terms of a relation lifting functor. An axiomatization of the logic, consisting of modal distributive laws, has been given together with an algebraic completeness proof in work of C. Kupke, A. Kurz and Y. Venema. In this paper, following our previous work on structural proof theory of the logic in the special case of the finitary powerset functor, we present cut-free, one- and two-sided sequent calculi for the finitary version of Moss' coalgebraic logic for a general finitary functor T in a uniform way. For the two-sided calculi to be cut-free we use a language extended with the boolean dual of the nabla
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GPP202%2F11%2FP304" target="_blank" >GPP202/11/P304: Proof theory of modal coalgebraic logic</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Theoretical Computer Science
ISSN
0304-3975
e-ISSN
—
Volume of the periodical
neuveden
Issue of the periodical within the volume
549
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
25
Pages from-to
36-60
UT code for WoS article
000341551400003
EID of the result in the Scopus database
—