Positive Fragments of Coalgebraic Logics
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F13%3A00206607" target="_blank" >RIV/68407700:21230/13:00206607 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-642-40206-7_6" target="_blank" >http://dx.doi.org/10.1007/978-3-642-40206-7_6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-642-40206-7_6" target="_blank" >10.1007/978-3-642-40206-7_6</a>
Alternative languages
Result language
angličtina
Original language name
Positive Fragments of Coalgebraic Logics
Original language description
Positive modal logic was introduced in an influential 1995 paper of Dunn as the positive fragment of standard modal logic. His completeness result consists of an axiomatization that derives all modal formulas that are valid on all Kripke frames and are built only from atomic propositions, conjunction, disjunction, box and diamond. In this paper, we provide a coalgebraic analysis of this theorem, which not only gives a conceptual proof based on duality theory, but also generalizes Dunn's result from Kripke frames to coalgebras of weak-pullback preserving functors. For possible application to fixed-point logics, it is note-worthy that the positive coalgebraic logic of a functor is given not by all predicate-liftings but by all monotone predicate liftings.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GAP202%2F11%2F1632" target="_blank" >GAP202/11/1632: Algebraic Methods in Proof Theory</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Algebra and Coalgebra in Computer Science
ISBN
978-3-642-40205-0
ISSN
—
e-ISSN
—
Number of pages
15
Pages from-to
51-65
Publisher name
Springer
Place of publication
Berlin
Event location
Warszawa
Event date
Sep 3, 2013
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—