Positive fragments of coalgebraic logics
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F15%3A00232168" target="_blank" >RIV/68407700:21230/15:00232168 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.2168/LMCS-11(3:18)2015" target="_blank" >http://dx.doi.org/10.2168/LMCS-11(3:18)2015</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.2168/LMCS-11(3:18)2015" target="_blank" >10.2168/LMCS-11(3:18)2015</a>
Alternative languages
Result language
angličtina
Original language name
Positive fragments of coalgebraic logics
Original language description
Positive modal logic was introduced in an influential 1995 paper of Dunn as the positive fragment of standard modal logic. His completeness result consists of an axiomatization that derives all modal formulas that are valid on all Kripke frames and are built only from atomic propositions, conjunction, disjunction, box and diamond. In this paper, we provide a coalgebraic analysis of this theorem, which not only gives a conceptual proof based on duality theory, but also generalizes Dunn?s result from Kripke frames to coalgebras for weak-pullback preserving functors.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GAP202%2F11%2F1632" target="_blank" >GAP202/11/1632: Algebraic Methods in Proof Theory</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Logical Methods in Computer Science
ISSN
1860-5974
e-ISSN
—
Volume of the periodical
11
Issue of the periodical within the volume
3
Country of publishing house
DE - GERMANY
Number of pages
51
Pages from-to
1-51
UT code for WoS article
000365417600018
EID of the result in the Scopus database
2-s2.0-84943624845