An institutional approach to positive coalgebraic logic
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F17%3A00313693" target="_blank" >RIV/68407700:21230/17:00313693 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1093/logcom/exv074" target="_blank" >http://dx.doi.org/10.1093/logcom/exv074</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1093/logcom/exv074" target="_blank" >10.1093/logcom/exv074</a>
Alternative languages
Result language
angličtina
Original language name
An institutional approach to positive coalgebraic logic
Original language description
Positive modal logic, as introduced by Dunn in 1995, is the negation-free fragment of the standard modal logic of all Kripke frames. Positive coalgebraic logic, introduced by the authors in a previous work, expands the above result from Kripke frames to more general transition systems, namely to coalgebras of weak-pullback preserving functors. We show that this construction is both modular and uniform in the functor giving the type of coalgebra. More precisely, we formalize both Set and Pos-based coalgebraic modal logic as institutions, and we exhibit a morphism of institutions between them giving the positive fragment of coalgebraic modal logic.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Logic and Computations
ISSN
0955-792X
e-ISSN
1465-363X
Volume of the periodical
27
Issue of the periodical within the volume
6
Country of publishing house
GB - UNITED KINGDOM
Number of pages
26
Pages from-to
1799-1824
UT code for WoS article
000409172200005
EID of the result in the Scopus database
2-s2.0-85031938908